skip to main content


Search for: All records

Creators/Authors contains: "Liu, Longfei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 22, 2024
  2. Surface-assisted, tile-based DNA self-assembly is a powerful method to construct large, two-dimensional (2D) nanoarrays. To further increase the structural complexity, one idea is to incorporate different types of tiles into one assembly system. However, different tiles have different adsorption strengths to the solid surface. The differential adsorptions make it difficult to control the effective molar ratio between different DNA tile concentrations on the solid surface, leading to assembly failure. Herein, we propose a solution to this problem by engineering the tiles with comparable molecular weights while maintaining their architectures. As a demonstration, we have applied this strategy to successfully assemble binary DNA 2D arrays out of very different tiles. We expect that this strategy would facilitate assembly of other complicated nanostructures as well. 
    more » « less
    Free, publicly-accessible full text available June 15, 2024
  3. null (Ed.)
  4. Abstract

    Customizable nanostructures built through the DNA‐origami technique hold tremendous promise in nanomaterial fabrication and biotechnology. Despite the cutting‐edge tools for DNA‐origami design and preparation, it remains challenging to separate structural components of an architecture built from—thus held together by—a continuous scaffold strand, which in turn limits the modularity and function of the DNA‐origami devices. To address this challenge, here we present an enzymatic method to clean up and reconfigure DNA‐origami structures. We target single‐stranded (ss) regions of DNA‐origami structures and remove them with CRISPR‐Cas12a, a hyper‐active ssDNA endonuclease without sequence specificity. We demonstrate the utility of this facile, selective post‐processing method on DNA structures with various geometrical and mechanical properties, realizing intricate structures and structural transformations that were previously difficult to engineer. Given the biocompatibility of Cas12a‐like enzymes, this versatile tool may be programmed in the future to operate functional nanodevices in cells.

     
    more » « less
  5. Abstract

    Customizable nanostructures built through the DNA‐origami technique hold tremendous promise in nanomaterial fabrication and biotechnology. Despite the cutting‐edge tools for DNA‐origami design and preparation, it remains challenging to separate structural components of an architecture built from—thus held together by—a continuous scaffold strand, which in turn limits the modularity and function of the DNA‐origami devices. To address this challenge, here we present an enzymatic method to clean up and reconfigure DNA‐origami structures. We target single‐stranded (ss) regions of DNA‐origami structures and remove them with CRISPR‐Cas12a, a hyper‐active ssDNA endonuclease without sequence specificity. We demonstrate the utility of this facile, selective post‐processing method on DNA structures with various geometrical and mechanical properties, realizing intricate structures and structural transformations that were previously difficult to engineer. Given the biocompatibility of Cas12a‐like enzymes, this versatile tool may be programmed in the future to operate functional nanodevices in cells.

     
    more » « less